Calculate Creatinine Clearance (CrCl), a measure of renal function based on age, weight, gender, and serum creatinine. This is the Cockcroft and Gault Formula.
References
Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31-41.
See also
calculate_crcl_peck
for Peck formula
Examples
library(dplyr)
dmcognigen_cov %>%
mutate(CRCL = calculate_crcl(
age = AGE,
scr = SCR,
sexf = SEXF,
wtkg = WTKG
))
#> Formula to calculate CRCL:
#> Males: CRCL [mL/min] = ((140 - AGE [y]) × WTKG [kg]) ÷ (72 × SCR [mg/dL])
#> Females: CRCL [mL/min] = (((140 - AGE [y]) × WTKG [kg]) ÷ (72 × SCR [mg/dL])) × 0.85
#> # A tibble: 254 × 53
#> DOMAIN STUDYID USUBJID ID RACEN RACEC SEXF SEXFC HTCM WTKG AST ASTULN
#> <chr> <chr> <chr> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 DM CDISCP… 01-701… 10101 1 Whit… 1 Fema… 147. 54.4 40 34
#> 2 DM CDISCP… 01-701… 10102 1 Whit… 0 Male 163. 80.3 21 36
#> 3 DM CDISCP… 01-701… 10103 1 Whit… 0 Male 178. 99.3 24 36
#> 4 DM CDISCP… 01-701… 10104 1 Whit… 0 Male 175. 88.4 20 36
#> 5 DM CDISCP… 01-701… 10105 1 Whit… 1 Fema… 155. 62.6 23 34
#> 6 DM CDISCP… 01-701… 10106 1 Whit… 1 Fema… 149. 67.1 25 34
#> 7 DM CDISCP… 01-701… 10108 1 Whit… 0 Male 169. 78.0 19 36
#> 8 DM CDISCP… 01-701… 10109 1 Whit… 1 Fema… 158. 59.9 28 34
#> 9 DM CDISCP… 01-701… 10110 1 Whit… 0 Male 182. 78.9 26 36
#> 10 DM CDISCP… 01-701… 10111 1 Whit… 0 Male 180. 71.2 15 36
#> # ℹ 244 more rows
#> # ℹ 41 more variables: SCR <dbl>, SCRULN <dbl>, TBIL <dbl>, TBILULN <dbl>,
#> # ASTCAT <dbl>, BMI <dbl>, BSA <dbl>, IBW <dbl>, CRCL <dbl>, CRCLP <dbl>,
#> # EGFR <dbl>, EGFRSCHW <dbl>, IBWCHILD <dbl>, LBM <dbl>, TBILCAT <dbl>,
#> # RFCAT <dbl>, RFCATC <chr>, NCILIV <dbl>, NCILIVC <chr>, SUBJID <chr>,
#> # RFSTDTC <chr>, RFENDTC <chr>, RFXSTDTC <chr>, RFXENDTC <chr>,
#> # RFICDTC <chr>, RFPENDTC <chr>, DTHDTC <chr>, DTHFL <chr>, SITEID <chr>, …
# Below will also work if the dataset contains expected variables
dmcognigen_cov %>%
mutate(CRCL = calculate_crcl())
#> AGE variable found and used for the age argument.
#> SCR variable found and used for the scr argument.
#> SEXF variable found and used for the sexf argument.
#> WTKG variable found and used for the wtkg argument.
#> Formula to calculate CRCL:
#> Males: CRCL [mL/min] = ((140 - AGE [y]) × WTKG [kg]) ÷ (72 × SCR [mg/dL])
#> Females: CRCL [mL/min] = (((140 - AGE [y]) × WTKG [kg]) ÷ (72 × SCR [mg/dL])) × 0.85
#> # A tibble: 254 × 53
#> DOMAIN STUDYID USUBJID ID RACEN RACEC SEXF SEXFC HTCM WTKG AST ASTULN
#> <chr> <chr> <chr> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 DM CDISCP… 01-701… 10101 1 Whit… 1 Fema… 147. 54.4 40 34
#> 2 DM CDISCP… 01-701… 10102 1 Whit… 0 Male 163. 80.3 21 36
#> 3 DM CDISCP… 01-701… 10103 1 Whit… 0 Male 178. 99.3 24 36
#> 4 DM CDISCP… 01-701… 10104 1 Whit… 0 Male 175. 88.4 20 36
#> 5 DM CDISCP… 01-701… 10105 1 Whit… 1 Fema… 155. 62.6 23 34
#> 6 DM CDISCP… 01-701… 10106 1 Whit… 1 Fema… 149. 67.1 25 34
#> 7 DM CDISCP… 01-701… 10108 1 Whit… 0 Male 169. 78.0 19 36
#> 8 DM CDISCP… 01-701… 10109 1 Whit… 1 Fema… 158. 59.9 28 34
#> 9 DM CDISCP… 01-701… 10110 1 Whit… 0 Male 182. 78.9 26 36
#> 10 DM CDISCP… 01-701… 10111 1 Whit… 0 Male 180. 71.2 15 36
#> # ℹ 244 more rows
#> # ℹ 41 more variables: SCR <dbl>, SCRULN <dbl>, TBIL <dbl>, TBILULN <dbl>,
#> # ASTCAT <dbl>, BMI <dbl>, BSA <dbl>, IBW <dbl>, CRCL <dbl>, CRCLP <dbl>,
#> # EGFR <dbl>, EGFRSCHW <dbl>, IBWCHILD <dbl>, LBM <dbl>, TBILCAT <dbl>,
#> # RFCAT <dbl>, RFCATC <chr>, NCILIV <dbl>, NCILIVC <chr>, SUBJID <chr>,
#> # RFSTDTC <chr>, RFENDTC <chr>, RFXSTDTC <chr>, RFXENDTC <chr>,
#> # RFICDTC <chr>, RFPENDTC <chr>, DTHDTC <chr>, DTHFL <chr>, SITEID <chr>, …
# Set a cap at some value, like 160
dmcognigen_cov %>%
mutate(CRCL = pmin(calculate_crcl(), 160))
#> AGE variable found and used for the age argument.
#> SCR variable found and used for the scr argument.
#> SEXF variable found and used for the sexf argument.
#> WTKG variable found and used for the wtkg argument.
#> Formula to calculate CRCL:
#> Males: CRCL [mL/min] = ((140 - AGE [y]) × WTKG [kg]) ÷ (72 × SCR [mg/dL])
#> Females: CRCL [mL/min] = (((140 - AGE [y]) × WTKG [kg]) ÷ (72 × SCR [mg/dL])) × 0.85
#> # A tibble: 254 × 53
#> DOMAIN STUDYID USUBJID ID RACEN RACEC SEXF SEXFC HTCM WTKG AST ASTULN
#> <chr> <chr> <chr> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 DM CDISCP… 01-701… 10101 1 Whit… 1 Fema… 147. 54.4 40 34
#> 2 DM CDISCP… 01-701… 10102 1 Whit… 0 Male 163. 80.3 21 36
#> 3 DM CDISCP… 01-701… 10103 1 Whit… 0 Male 178. 99.3 24 36
#> 4 DM CDISCP… 01-701… 10104 1 Whit… 0 Male 175. 88.4 20 36
#> 5 DM CDISCP… 01-701… 10105 1 Whit… 1 Fema… 155. 62.6 23 34
#> 6 DM CDISCP… 01-701… 10106 1 Whit… 1 Fema… 149. 67.1 25 34
#> 7 DM CDISCP… 01-701… 10108 1 Whit… 0 Male 169. 78.0 19 36
#> 8 DM CDISCP… 01-701… 10109 1 Whit… 1 Fema… 158. 59.9 28 34
#> 9 DM CDISCP… 01-701… 10110 1 Whit… 0 Male 182. 78.9 26 36
#> 10 DM CDISCP… 01-701… 10111 1 Whit… 0 Male 180. 71.2 15 36
#> # ℹ 244 more rows
#> # ℹ 41 more variables: SCR <dbl>, SCRULN <dbl>, TBIL <dbl>, TBILULN <dbl>,
#> # ASTCAT <dbl>, BMI <dbl>, BSA <dbl>, IBW <dbl>, CRCL <dbl>, CRCLP <dbl>,
#> # EGFR <dbl>, EGFRSCHW <dbl>, IBWCHILD <dbl>, LBM <dbl>, TBILCAT <dbl>,
#> # RFCAT <dbl>, RFCATC <chr>, NCILIV <dbl>, NCILIVC <chr>, SUBJID <chr>,
#> # RFSTDTC <chr>, RFENDTC <chr>, RFXSTDTC <chr>, RFXENDTC <chr>,
#> # RFICDTC <chr>, RFPENDTC <chr>, DTHDTC <chr>, DTHFL <chr>, SITEID <chr>, …