Overview
dmcognigen provides functions for data management tasks at the Clinical Pharmacology and Pharmacometrics (CPP) business unit of Simulations Plus, Inc.
Install it with:
remotes::install_github("simulations-plus/dmcognigen")Load it with:
Functionality
Count Observations and Unique Values by Group
- The function expected to be used most frequently in this package is the 
cnt()function. - 
cnt()is an extension ofdplyr::count()intended to count the number of distinct occurrences of variables within some group. For example, we commonlycnt(.data, STUDYID, n_distinct_vars = USUBJID)to count the number of records within each STUDYID along with the number of unique subjects (USUBJID) within each STUDYID. 
Calculate Standard Variables
- See full details in the Calculations vignette.
 - Use the 
calculate_*()family of functions to apply standard equations. 
Read and Leverage Data Requirements
- See full details in the Data Requirements vignette.
 - Check which data requirement files are available with 
available_requirements_table()and import data requirements withread_requirements(). - Use attributes of requirements to apply characteristics defined in data requirements to a dataset.
- The 
"decode_tbls"attribute can be utilized withinjoin_decode_labels()orjoin_decode_levels(). - The 
"labels_named_list"attribute can be utilized withinset_labels(). 
 - The 
 
Interact with Decodes
- See full details in the Decode Tables vignette.
 - Extract decodes from vectors with 
extract_decode_tbls(). - Extract decodes from a dataset with 
extract_decode_tbls_from_data(). - Merge decodes with 
join_decode_labels()orjoin_decode_levels(). - Create factor variables with 
set_decode_factors(). 
Search Datasets
- Find datasets where variables exist with 
in_which(). - Search for patterns in variable names, variable labels, and variable content across all datasets in an environment with 
search_environment_data()then summarize the results withcnt_search_result().