Calculate Ideal Body Weight (IBW), a measure of potential body fat based on height
References
Robinson JD, Lupkiewicz SM, Palenik L, Lopez LM, Ariet M. Determination of ideal body weight for drug dosage calculations. AmJHosp Pharm. 1983;40:1016-1019
Examples
library(dplyr)
dmcognigen_cov %>%
mutate(IBW = calculate_ibw(htcm = HTCM, sexf = SEXF))
#> Formula to calculate IBW:
#> Males: IBW [kg] = 51.65 [kg] + 1.85 [kg] × ((HTCM [cm] ÷ 2.54) - 60)
#> Females: IBW [kg] = 48.67 [kg] + 1.65 [kg] × ((HTCM [cm] ÷ 2.54) - 60)
#> # A tibble: 254 × 53
#> DOMAIN STUDYID USUBJID ID RACEN RACEC SEXF SEXFC HTCM WTKG AST ASTULN
#> <chr> <chr> <chr> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 DM CDISCP… 01-701… 10101 1 Whit… 1 Fema… 147. 54.4 40 34
#> 2 DM CDISCP… 01-701… 10102 1 Whit… 0 Male 163. 80.3 21 36
#> 3 DM CDISCP… 01-701… 10103 1 Whit… 0 Male 178. 99.3 24 36
#> 4 DM CDISCP… 01-701… 10104 1 Whit… 0 Male 175. 88.4 20 36
#> 5 DM CDISCP… 01-701… 10105 1 Whit… 1 Fema… 155. 62.6 23 34
#> 6 DM CDISCP… 01-701… 10106 1 Whit… 1 Fema… 149. 67.1 25 34
#> 7 DM CDISCP… 01-701… 10108 1 Whit… 0 Male 169. 78.0 19 36
#> 8 DM CDISCP… 01-701… 10109 1 Whit… 1 Fema… 158. 59.9 28 34
#> 9 DM CDISCP… 01-701… 10110 1 Whit… 0 Male 182. 78.9 26 36
#> 10 DM CDISCP… 01-701… 10111 1 Whit… 0 Male 180. 71.2 15 36
#> # ℹ 244 more rows
#> # ℹ 41 more variables: SCR <dbl>, SCRULN <dbl>, TBIL <dbl>, TBILULN <dbl>,
#> # ASTCAT <dbl>, BMI <dbl>, BSA <dbl>, IBW <dbl>, CRCL <dbl>, CRCLP <dbl>,
#> # EGFR <dbl>, EGFRSCHW <dbl>, IBWCHILD <dbl>, LBM <dbl>, TBILCAT <dbl>,
#> # RFCAT <dbl>, RFCATC <chr>, NCILIV <dbl>, NCILIVC <chr>, SUBJID <chr>,
#> # RFSTDTC <chr>, RFENDTC <chr>, RFXSTDTC <chr>, RFXENDTC <chr>,
#> # RFICDTC <chr>, RFPENDTC <chr>, DTHDTC <chr>, DTHFL <chr>, SITEID <chr>, …
# Below will also work if the dataset contains expected variables
dmcognigen_cov %>%
mutate(IBW = calculate_ibw())
#> HTCM variable found and used for the htcm argument.
#> SEXF variable found and used for the sexf argument.
#> Formula to calculate IBW:
#> Males: IBW [kg] = 51.65 [kg] + 1.85 [kg] × ((HTCM [cm] ÷ 2.54) - 60)
#> Females: IBW [kg] = 48.67 [kg] + 1.65 [kg] × ((HTCM [cm] ÷ 2.54) - 60)
#> # A tibble: 254 × 53
#> DOMAIN STUDYID USUBJID ID RACEN RACEC SEXF SEXFC HTCM WTKG AST ASTULN
#> <chr> <chr> <chr> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 DM CDISCP… 01-701… 10101 1 Whit… 1 Fema… 147. 54.4 40 34
#> 2 DM CDISCP… 01-701… 10102 1 Whit… 0 Male 163. 80.3 21 36
#> 3 DM CDISCP… 01-701… 10103 1 Whit… 0 Male 178. 99.3 24 36
#> 4 DM CDISCP… 01-701… 10104 1 Whit… 0 Male 175. 88.4 20 36
#> 5 DM CDISCP… 01-701… 10105 1 Whit… 1 Fema… 155. 62.6 23 34
#> 6 DM CDISCP… 01-701… 10106 1 Whit… 1 Fema… 149. 67.1 25 34
#> 7 DM CDISCP… 01-701… 10108 1 Whit… 0 Male 169. 78.0 19 36
#> 8 DM CDISCP… 01-701… 10109 1 Whit… 1 Fema… 158. 59.9 28 34
#> 9 DM CDISCP… 01-701… 10110 1 Whit… 0 Male 182. 78.9 26 36
#> 10 DM CDISCP… 01-701… 10111 1 Whit… 0 Male 180. 71.2 15 36
#> # ℹ 244 more rows
#> # ℹ 41 more variables: SCR <dbl>, SCRULN <dbl>, TBIL <dbl>, TBILULN <dbl>,
#> # ASTCAT <dbl>, BMI <dbl>, BSA <dbl>, IBW <dbl>, CRCL <dbl>, CRCLP <dbl>,
#> # EGFR <dbl>, EGFRSCHW <dbl>, IBWCHILD <dbl>, LBM <dbl>, TBILCAT <dbl>,
#> # RFCAT <dbl>, RFCATC <chr>, NCILIV <dbl>, NCILIVC <chr>, SUBJID <chr>,
#> # RFSTDTC <chr>, RFENDTC <chr>, RFXSTDTC <chr>, RFXENDTC <chr>,
#> # RFICDTC <chr>, RFPENDTC <chr>, DTHDTC <chr>, DTHFL <chr>, SITEID <chr>, …